Abstract

This research demonstrates scale-up studies with the development of concentrating and nonconcentrating solar reactors employing suspended and supported TiO2 for the degradation of herbicide isoproturon (IPU) with total working volume of 6 L. Novel cement beads were used as support material for fixing the catalyst particles. In the case of nonconcentrating slurry reactor, 85% degradation of IPU was achieved after 3 h of treatment with four number of catalyst recycling, whereas nonconcentrating fixed-bed reactor using TiO2 immobilized cement beads took relatively more time (10 h) for the degradation of IPU (65%) due to mass transfer limitations, but it overcame the implication of catalyst filtration post-treatment. The immobilized catalyst was successfully recycled for ten times boosting its commercial applications. High photon flux with concentrating parabolic trough collector (PTC) using fixed catalysis approach with same immobilized catalyst substantially reduced the treatment time to 4 h for achieving 91% degradation of IPU. Working and execution of pilot-scale reactors are very fruitful to extend these results for a technology development with the present leads.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call