Abstract

The aim of this study was to explore the effect of concentrated growth factor (CGF) on the wound healing potential of human epidermal cells (HaCaT) in vitro and in vivo. CGF was extracted from venous blood using the centrifugal separation method. The CGF-conditioned medium was prepared from CGF gel immersed in Dulbecco's Modified Eagle medium. Crystal violet staining and wound healing assay were used to evaluate the proliferation and migration of HaCaT cells, respectively. Lipopolysaccharide (LPS) was used to test the anti-inflammatory function of CGF. An ELISA kit was employed to detect the concentration of growth factors and interleukins in CGF medium. mRNA and protein levels of angiogenic biomarkers (Angiopoietin-1 (ANGPT-1), vascular endothelial growth factor-A (VEGF-A) and Angiopoietin-2 (ANGPT-2) ) were determined by quantitative polymerase chain reaction (qPCR) and Western blot, respectively. A dorsal excisional wound model was recruited to test the wound healing effect of CGF in mice. Three-day treatment of HaCaT cells with CGF significantly promoted cell proliferation, which was followed by an increase in Vascular Endothelial Growth Factor (VEGF) and Fibroblast Growth Factor (FGF) levels in the medium. Cytokines (IL-6, IL-8 and TNF-α) were increased in LPS-stimulated HaCaT cells after 3 days, and CGF slightly inhibited the mRNA expression of these cytokines. The RAS signaling pathway was activated upon CGF treatment. Both RAS knockdown and an inhibitor of RAS (zoledronic acid) could block the migration of HaCaT cells after CGF treatment. Protein expressions of CD31, ANGPT-1, and VEGF-A were up-regulated in a dose-dependent manner upon CGF exposure. The protein level of ANGPT-2 was down-regulated after CGF treatment. CGF could promote wound healing in vivo, as demonstrated using the full skin defect model in nude mice. CGF was shown to promote wound repair in vitro and in vivo. The RAS cell signaling pathway was responsible for CGF stimulating the wound healing potential of HaCaT cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.