Abstract

A physically unclonable function (PUF) is a creditable and lightweight solution to the mistrust in billions of Internet of Things devices. Because of this remarkable importance, PUF need to be immune to multifarious attack means. Making the PUF concealable is considered an effective countermeasure but it is not feasible for existing PUF designs. The bottleneck is finding a reproducible randomness source that supports repeatable concealment and accurate recovery of the PUF data. In this work, we experimentally demonstrate a concealable PUF at the chip level with an integrated memristor array and peripherals. The correlated filamentary switching characteristic of the hafnium oxide (HfOx)-based memristor is used to achieve PUF concealment/recovery with SET/RESET operations efficiently. PUF recovery with a zero-bit error rate and remarkable attack resistance are achieved simultaneously with negligible circuit overhead. This concealable PUF provides a promising opportunity to build memristive hardware systems with effective security in the near future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.