Abstract
A family of concave penalties, including the smoothly clipped absolute deviation (SCAD) and minimax concave penalties (MCP), has been shown to have attractive properties in variable selection. The computation of concave penalized solutions, however, is a difficult task. We propose a majorization minimization by coordinate descent (MMCD) algorithm to compute the solutions of concave penalized generalized linear models (GLM). In contrast to the existing algorithms that uses local quadratic or local linear approximation of the penalty, the MMCD majorizes the negative log-likelihood by a quadratic loss, but does not use any approximation to the penalty. This strategy avoids the computation of scaling factors in iterative steps, hence improves the efficiency of coordinate descent. Under certain regularity conditions, we establish the theoretical convergence property of the MMCD algorithm. We implement this algorithm in a penalized logistic regression model using the SCAD and MCP penalties. Simulation studies and a data example demonstrate that the MMCD works sufficiently fast for the penalized logistic regression in high-dimensional settings where the number of covariates is much larger than the sample size. Grouping structure among predictors exists in many regression applications. We first propose an `2 grouped concave penalty to incorporate such group information in a regression model. The `2 grouped concave penalty performs group selection and includes group Lasso (Yuan and Lin (2006)) as a special case. An efficient algorithm is developed and its theoretical convergence property is established under certain
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.