Abstract

The controlled synthesis of hollow structure transition metal compounds has long been a very interesting and significant research topic in the energy storage and conversion fields. Herein, an ultrasound-assisted chemical etching strategy is proposed for fabricating concave Ni(OH)2 nanocubes. The morphology and composition evolution of the concave Ni(OH)2 nanocubes suggest a possible formation mechanism. The as-synthesized Ni(OH)2 nanostructures used as supercapacitor electrode materials exhibit high specific capacitance (1624 F g-1 at 2 A g-1) and excellent cycling stability (77% retention after 4000 cycles) due to their large specific surface area and open pathway. In addition, the corresponding hybrid capacitor (Ni(OH)2//graphene) demonstrates high energy density (42.9 Wh kg-1 at a power density of 800 W kg-1) and long cycle life (78% retention after 4000 cycles at 5 A g-1). This work offers a simple and economic approach for obtaining concave Ni(OH)2 nanocubes for energy storage and conversion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call