Abstract

A robust error control scheme for data transmission in CDMA-based cellular systems is proposed which employs outer Reed-Solomon codes concatenated with inner convolutional codes. The performance of this scheme is analyzed assuming nonperiodic random spreading sequences and a Rake receiver with perfect knowledge of the channel. In particular, a simple model for the memoryless inner coding channel that encompasses the effects of multiple access interference, self-noise and thermal noise is first derived. Using new tight upper bounds on bit- and symbol-error probabilities of convolutional codes over Nakagami, Rayleigh, and Rician fading multipath channels, the performance of the concatenated coding scheme is then evaluated. The Reed-Solomon/convolutional coding scheme has been adopted by the European RACE Project Code Division Testbed (CODIT) and implemented in an experimental testbed. The code design methodology, which has been used to specify the 9.6-, 64-, and 128-kbit/s data traffic channels of the CODIT testbed, is presented and the single-cell CDMA capacity is computed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.