Abstract

Concatenated forward error correction is studied using an outer KP4 Reed-Solomon code with hard-decision decoding and inner single parity check (SPC) codes with Chase/Wagner soft-decision decoding. Analytical expressions are derived for the end-to-end frame and bit error rates for transmission over additive white Gaussian noise channels with binary phase-shift keying (BPSK) and quaternary amplitude shift keying (4-ASK), as well as with symbol interleavers and quantized channel outputs. The BPSK error rates are compared to those of two other inner codes: a two-dimensional product code with SPC component codes and an extended Hamming code. Simulation results for unit-memory inter-symbol interference channels and 4-ASK are also presented. The results show that the coding schemes achieve similar error rates, but SPC codes have the lowest complexity and permit flexible rate adaptation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call