Abstract

DNA-templated copper nanoparticles (CuNPs) have emerged as promising fluorescent probes for biochemical assays, but the reported monomeric CuNPs remain problematic because of weak fluorescence and poor stability. To solve this problem, a novel concatemeric dsDNA-templated CuNPs (dsDNA-CuNPs) strategy was proposed by introducing the rolling circle replication (RCR) technique into CuNPs synthesis. In this strategy, a short oligonucleotide primer could trigger RCR and be further converted to a long concatemeric dsDNA scaffold through hybridization. After the addition of copper ions and ascorbate, concatemeric dsDNA-CuNPs could effectively form and emit intense fluorescence in the range of 500-650 nm under a 340 nm excitation. In comparison with monomeric dsDNA-CuNPs, the sensitivity of concatemeric dsDNA-CuNPs was greatly improved with ~10,000 folds amplification. And their fluorescence signal was detected to reserve ~60% at 2.5 h after formation, revealing ~2 times enhanced stability. On the basis of these advantages, microRNA let-7d was selected as the model target to testify this strategy as a versatile assay platform. By directly using let-7d as the primer in RCR, the simple, low-cost, and selective microRNA detection was successfully achieved with a good linearity between 10 and 400 pM and a detection limit of 10 pM. The concatemeric dsDNA-CuNPs strategy might be widely adapted to various analytes that can directly or indirectly induce RCR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.