Abstract
Glycoproteins were isolated from a rat brain synaptic junction fraction by affinity chromatography on Concanavalin A-agarose. The isolated glycoproteins were digested with pronase and radiolabeled with 125I-Bolton Hunter reagent, and 125I-Concanavalin A-binding glycopeptides were isolated by chromatography on Concanavalin A-agarose. Treatment of the 125I-Concanavalin A-binding glycopeptides with either alpha-mannosidase or endo-beta-N-acetylglucosaminidase-C11 abolished their interaction with Concanavalin A. The pronase digest was reacted with endo-beta-N-acetylglucosaminidase-C11 and released oligosaccharides were reduced with NaB3H4. Following affinity chromatography on Concanavalin A-agarose, Concanavalin A-binding [3H]oligosaccharides were chromatographed on Biogel P4. Two major oligosaccharides corresponding to standard carbohydrates containing eight and five mannose residues were identified. Treatment of these oligosaccharides with alpha-mannosidase converted them to smaller saccharides having a mobility on Biogel P4 columns equal to the standard disaccharide mannose-beta-1-4-N'-acetylglucosamine. These results demonstrate that the Concanavalin A receptor activity associated with CNS synaptic junctions resides in asparagine-linked oligosaccharides of the high-mannose type.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.