Abstract
Extracting information from scanned images is a critical task with far-reaching practical implications. Traditional methods often fall short by inadequately leveraging both image and text features, leading to less accurate and efficient outcomes. In this study, we introduce ConBGAT, a cutting-edge model that seamlessly integrates convolutional neural networks (CNNs), Transformers, and graph attention networks to address these shortcomings. Our approach constructs detailed graphs from text regions within images, utilizing advanced Optical Character Recognition to accurately detect and interpret characters. By combining superior extracted features of CNNs for image and Distilled Bidirectional Encoder Representations from Transformers (DistilBERT) for text, our model achieves a comprehensive and efficient data representation. Rigorous testing on real-world datasets shows that ConBGAT significantly outperforms existing methods, demonstrating its superior capability across multiple evaluation metrics. This advancement not only enhances accuracy but also sets a new benchmark for information extraction in scanned image.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.