Abstract

A comtrans algebra is said to decompose as the Thomas sum of two subalgebras if it is a direct sum at the module level, and if its algebra structure is obtained from the subalgebras and their mutual interactions as a sum of the corresponding split extensions. In this paper, we investigate Thomas sums of comtrans algebras of bilinear forms. General necessary and sufficient conditions are given for the decomposition of the comtrans algebra of a bilinear form as a Thomas sum. Over rings in which 2 is not a zero divisor, comtrans algebras of symmetric bilinear forms are identified as Thomas summands of algebras of infinitesimal isometries of extended spaces, the complementary Thomas summand being the algebra of infinitesimal isometries of the original space. The corresponding Thomas duals are also identified. These results represent generalizations of earlier results concerning the comtrans algebras of finite-dimensional Euclidean spaces, which were obtained using known properties of symmetric spaces. By contrast, the methods of the current paper involve only the theory of comtrans algebras.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.