Abstract

The Met-allele of the COMT Val158Met polymorphism slows metabolism and increases bioavailability of dopamine (DA) in the prefrontal cortex compared to the Val-allele. Healthy Met-carriers outperform Val-carriers on executive function (EF) tests, yet this ‘advantage’ disappears in methamphetamine (METH) dependence. Met-carriers may be disproportionately vulnerable to METH-related perturbations of DA, yet it is unknown whether COMT modulates METH effects on CSF DA biomarkers. Participants were 75 METH+ and 47 METH- men who underwent neurocognitive testing, COMT genotyping, and lumbar puncture. CSF was assayed for DA and its metabolite, homovanillic acid (HVA). Separate linear models regressed DA, HVA, and HVA/DA ratios on COMT, METH and their interaction. Pearson correlations examined associations between DA and EF. Significant interactions indicated that METH+ had lower DA and higher HVA/DA ratios among Met/Met, but not Val/Met-or Val/Val. Met/Met-exhibited the highest DA levels among METH-, whereas DA levels were comparable between Met/Met-and Val-carriers among METH+. Higher DA correlated with better EF in METH- Met/Met, but did not predict EF in the entire sample. DA was expectedly higher in METH- Met/Met, yet a discordant genotype-phenotype profile emerged in METH+ Met/Met, consistent with the notion that slow DA clearance exacerbates METH-associated DA dysregulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call