Abstract
In the literature, there exist strong results on the qualitative dynamical properties of chemical reaction networks (also called kinetic systems) governed by the mass action law and having zero deficiency. However, it is known that different network structures with different deficiencies may correspond to the same kinetic differential equations. In this paper, an optimization-based approach is presented for the computation of deficiency zero reaction network structures that are linearly conjugate to a given kinetic dynamics. Through establishing an equivalent condition for zero deficiency, the problem is traced back to the solution of an appropriately constructed mixed integer linear programming problem. Furthermore, it is shown that weakly reversible deficiency zero realizations can be determined in polynomial time using standard linear programming. Two examples are given for the illustration of the proposed methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.