Abstract

This paper addresses the computing-with-words paradigm by presenting an ontological self-organizing map (OSOM), which produces visualization and summarization information about datasets composed of words, namely, ontological data. The specific data that are used in this paper are the Gene Ontology (GO) annotations of genes and gene products. The OSOM is an extension of the SOM, which was initially developed by Kohonen. We adapt the SOM by integrating ontology-based similarity measures and relational-clustering distance measures. We also develop a novel prototype update. We present results on two datasets composed of GO annotations of genes and gene products. An OSOM-based summarization, which produces the term-based summarizations of the trained OSOM network, is also demonstrated. The results show that the OSOM-based visualization method correctly shows the cluster tendency of the genes and gene products and that the summarization provides useful information about the mapped groups of genes and gene products.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.