Abstract

In recent years, different computing models have emerged within the area of Unconventional Computation, and more specifically within Natural Computing, getting inspiration from mechanisms present in Nature. In this work, we incorporate concepts in virology and theoretical computer science to propose a novel computational model, called Virus Machine. Inspired by the manner in which viruses transmit from one host to another, a virus machine is a computational paradigm represented as a heterogeneous network that consists of three subnetworks: virus transmission, instruction transfer, and instruction-channel control networks. Virus machines provide non-deterministic sequential devices. As number computing devices, virus machines are proved to be computationally complete, that is, equivalent in power to Turing machines. Nevertheless, when some limitations are imposed with respect to the number of viruses present in the system, then a characterization for semi-linear sets is obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.