Abstract

Tangles of graphs have been introduced by Robertson and Seymour in the context of their graph minor theory. Tangles may be viewed as describing k-connected components of a graph (though in a twisted way). They play an important role in graph minor theory. An interesting aspect of tangles is that they cannot only be defined for graphs, but more generally for arbitrary connectivity functions (that is, integer-valued submodular and symmetric set functions).However, tangles are difficult to deal with algorithmically. To start with, it is unclear how to represent them, because they are families of separations and as such may be exponentially large. Our first contribution is a data structure for representing and accessing all tangles of a graph up to some fixed order.Using this data structure, we can prove an algorithmic version of a very general structure theorem due to Carmesin, Diestel, Harman and Hundertmark (for graphs) and Hundertmark (for arbitrary connectivity functions) that yields a canonical tree decomposition whose parts correspond to the maximal tangles. (This may be viewed as a generalisation of the decomposition of a graph into its 3-connected components.)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.