Abstract
Leech [9] and Birkhoff and Hall [1] are standard references to computational group theory. The lesser-known Petrick [13] contains many articles on symbolic manipulation and group-theoretic work including a description by Sims of techniques he has developed to compute with very large degree permutation groups. These ideas have been used by him [14] most impressively to prove the existence and uniqueness of Lyons’ simple group of order 51 765 179 004 000 000 = 2837567.11.31.37.67 by constructing a permutation representation of it on the coasts of a subgroup G 2(5) of index 8 835 156. It should be added that Lyons’ group has no proper subgroup larger than G 2(5).KeywordsSimple GroupMaximal SubgroupAlgebraic ManipulationProper SubgroupFinite Simple GroupThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.