Abstract

The vertex connectivity κ of a graph is the smallest number of vertices whose deletion separates the graph or makes it trivial. We present the fastest known deterministic algorithm for finding the vertex connectivity and a corresponding separator. The time for a digraph having n vertices and m edges is O(min{κ3+n,κn}m); for an undirected graph the term m can be replaced by κn. A randomized algorithm finds κ with error probability 1/2 in time O(nm). If the vertices have nonnegative weights the weighted vertex connectivity is found in time O(κ1nmlog(n2/m)) where κ1≤m/n is the unweighted vertex connectivity or in expected time O(nmlog(n2/m)) with error probability 1/2. The main algorithm combines two previous vertex connectivity algorithms and a generalization of the preflow-push algorithm of Hao and Orlin (1994, J. Algorithms17, 424–446) that computes edge connectivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call