Abstract
The problem of calculating the maximal Lyapunov exponent of a discrete inclusion (or equivalently its generalized spectral radius) is formulated as an average yield optimal control problem. It is shown that the maximal value of this problem can be approximated by the maximal value of discounted optimal control problems, where for irreducible inclusions the convergence is linear in the discount rate. This result is used to obtain convergence rates of an algorithm for the calculation of time-varying stability radii.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.