Abstract
We derive an algorithm for computing the wave-kernel functions $\cosh\sqrt{A}$ and $\mathrm{sinhc}\sqrt{A}$ for an arbitrary square matrix $A$, where $\mathrm{sinhc}z=\sinh(z)/z$. The algorithm is based on Pade approximation and the use of double angle formulas. We show that the backward error of any approximation to $\cosh\sqrt{A}$ can be explicitly expressed in terms of a hypergeometric function. To bound the backward error we derive and exploit a new bound for $\|A^k\|^{1/k}$ that is sharper than one previously obtained by Al-Mohy and Higham [SIAM J. Matrix Anal. Appl., 31 (2009), pp. 970--989]. The amount of scaling and the degree of the Pade approximant are chosen to minimize the computational cost subject to achieving backward stability for $\cosh\sqrt{A}$ in exact arithmetic. Numerical experiments show that the algorithm behaves in a forward stable manner in floating-point arithmetic and is superior in this respect to the general purpose Schur--Parlett algorithm applied to these functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.