Abstract
Phase-locked loops serve important roles in receivers, coherent transponders and similar radio-frequency-based applications. For many of these uses, the bandwidth of the loop must be kept small to limit the detrimental influence of noise, and this requirement makes the natural PLL pull-in process too slow and/or unreliable. To aid the acquisition process in these cases, an external sweep voltage can be applied to the VCO when the loop is unlocked. Hopefully, the sweep voltage will effect a rapid decrease in closed-loop frequency error to a point where phase lock is achieved quickly. For a second-order loop containing a perfect integrator loop filter, there is a maximum VCO sweep rate magnitude, denoted as R <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">m</sub> rad/sec <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> , for which phase lock is guaranteed. If the actual VCO sweep rate magnitude is less than R <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">m</sub> , the loop cannot sweep past a stable phase-lock state without locking correctly. For an applied sweep rate greater than R <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">m</sub> , the loop may sweep past a lock point and fail to achieve phase lock. In the PLL literature, only a trial-and-error approach has been described for approximating R <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">m</sub> given values of loop damping factor p and natural frequency omega <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n</sub> . Furthermore, no plot exists of R <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">m</sub> /omega <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n</sub> <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> versus rho. This dearth of results is remedied here. A new numerical algorithm is given that converges to the maximum sweep rate magnitude R <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">m</sub> . It is used to generate a plot of R <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">m/</sub> omega <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n</sub> <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> versus rho, a never-before-explored relationship in the PLL literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.