Abstract
We show how the Tutte polynomial of a matroid $M$ can be computed from its condensed configuration, which is a statistic of its lattice of cyclic flats. The results imply that the Tutte polynomial of $M$ is already determined by the abstract lattice of its cyclic flats together with their cardinalities and ranks. They furthermore generalize similiar statements for perfect matroid designs and near designs due to Brylawski (1980) and help to understand families of matroids with identical Tutte polynomials as constructed by Giménez and later improved by Shoda (2012).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.