Abstract

Let G = (V,E) be a simple connected molecular graph in chemical graph theory, where the vertex/atom set and edge/bond set of G denoted by V(G) and E(G), respectively and its vertices correspond to the atoms and the edges correspond to the bonds. Two counting polynomials the “Omega Ω(G,x) and Theta Θ(G,x)” polynomials of a molecular graph G were defined by Diudea as Ω(G,x) = ΣeE(G) xn(E) and Θ(G,x) = ΣeE(G) xn(E), where n(E) denotes the number of edges co-distant with the edge E. From definition of these counting polynomials, we can obtain the Theta polynomial by inserting the coefficient n(E) in the Omega polynomial. Then the Theta index will be the first derivative of the Theta polynomial Θ(G,x) evaluated at x = 1. The goal of this paper is to compute the Theta polynomial Θ(G,x) and the Theta index Θ(G) of an infinite family of the Titania Nanotubes TiO2(m,n) for the first time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.