Abstract

We present a method for computing the spectrum of black hole radiation of a scalar field satisfying a wave equation with high frequency dispersion. The method involves a combination of Laplace transform and WKB techniques for finding approximate solutions to ordinary differential equations. The modified wave equation is obtained by adding a higher order derivative term suppressed by powers of a fundamental momentum scale $k_0$ to the ordinary wave equation. Depending on the sign of this new term, high frequency modes propagate either superluminally or subluminally. We show that the resulting spectrum of created particles is thermal at the Hawking temperature, and further that the out-state is a thermal state at the Hawking temperature, to leading order in $k_0$, for either modification.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call