Abstract

The problem of computing the roots of a particular sequence of sparse polynomials pn(t) is considered. Each instance pn(t) incorporates only the n + 1 monomial terms $t,t^{2},t^{4},\ldots ,t^{2^{n}}$ associated with the binomial coefficients of order n and alternating signs. It is shown that pn(t) has (in addition to the obvious roots t = 0 and 1) precisely n − 1 simple roots on the interval (0,1) with no roots greater than 1, and a recursion relating pn(t) and pn+ 1(t) is used to show that they possess interlaced roots. Closed–form expressions for the Bernstein coefficients of pn(t) on [0,1] are derived and employed to compute the roots in double–precision arithmetic. Despite the severe variation of the graph of pn(t), and tight clustering of roots near t = 1, it is shown that for n ≤ 10, the roots on (0,1) are remarkably well–conditioned and can be computed to high accuracy using both the power and Bernstein forms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.