Abstract

Efficient methods for the computation of the real zeros of hypergeometric functions which are solutions of second order ODEs are described. These methods are based on global fixed point iterations which apply to families of functions satisfying first order linear difference differential equations with continuous coefficients. In order to compute the zeros of arbitrary solutions of the hypergeometric equations, we have at our disposal several different sets of difference differential equations (DDE). We analyze the behavior of these different sets regarding the rate of convergence of the associated fixed point iteration. It is shown how combinations of different sets of DDEs, depending on the range of parameters and the dependent variable, is able to produce efficient methods for the computation of zeros with a fairly uniform convergence rate for each zero.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.