Abstract

The existence of positive solutions to the discrete third-order three-point boundary-value problems (BVPs) was recently established in Ji and Yang [Positive solutions of discrete third-order three-point right focal boundary value problems, J. Differ. Equat. Appl. 15 (2009), pp. 185–195]. In this paper, we propose an algorithm for the computation of such positive solutions. The method is based on the power method for the dominant eigenvalue and the Crout-like factorization algorithm for the sparse system of linear equations. At each iteration of the method, it calls for a linear solver with linear computational complexity. The proposed method is extremely effective for large-scale problems. A numerical example is also included to demonstrate the effectiveness of the algorithm when applied to the third-order three-point BVPs of differential equation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.