Abstract

An algorithm for computing the aspect graph for a class of curved-surface objects based on an exact parcellation of 3-D viewpoint space is presented. The object class considered is solids of revolution. A detailed analysis of the visual events for this object class is given, as well as an algorithm for constructing the aspect graph. Numerical search techniques, based on a geometric interpretation of the visual events, have been devised to determine those visual event surfaces that cannot be calculated directly. The worst-case complexity of the number of cells in the parcellation of 3-D viewpoint space, and, hence, the number of nodes in the aspect graph, is O(N/sup 4/), where N is the degree of a polynomial that defines the object shape. A summary of the results for 20 different object descriptions is presented, along with a detailed example for a flower vase. >

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.