Abstract
Due to recent advances in the computation of finite fields discrete logarithms, the Barreto-Lynn-Scott family of elliptic curves of embedding degree 48 became suitable for instantiating pairing-based cryptography at the 256-bit security level. Observing the uncertainty around determining the constants that govern the best approach for computing discrete logarithms, Scott and Guillevic consider pairing-friendly elliptic curves of embedding degree higher than 50, and discovered a new family of elliptic curves with embedding degree 54. This work aims at investigating the theoretical and practical cost of both the Miller algorithm and the final exponentiation in the computation of the optimal ate pairing on the two aforementioned curves. Both our theoretical results, based on the operation counts of base-field operations, and our experimental observations collected from a real implementation, confirm that BLS48 curves remain the faster curve in the computation of the optimal ate pairing at the 256-bit security level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.