Abstract

Finding the minimum distance of low-density-parity-check (LDPC) codes is an NP-hard problem. Different from all existing works that focus on binary LDPC codes, we in this paper aim to compute the minimum distance of nonbinary LDPC codes, motivated by the fact that operating in a large Galois field provides one important degree of freedom to achieve both good waterfall and error-floor performance. Our method is based on the existing nearest nonzero codeword search (NNCS) method, but several modifications are incorporated for nonbinary LDPC codes, including the modified error impulse pattern, the dithering method, and the nonbinary decoder. Numerical results on the estimated minimum distances show that a code's minimum distance can be increased by careful selection of nonzero elements of the parity check matrix, or by increasing the mean column weight, or by increasing the size of the Galois field. These results support observations that have been made based on simulated performance in the literature. Finally, we provide an upper bound on the minimum distance for nonbinary quasi-cyclic LDPC codes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.