Abstract

Let $E$ be an optimal elliptic curve defined over $\mathbb{Q}$. The critical subgroup of $E$ is defined by Mazur and Swinnerton-Dyer as the subgroup of $E(\mathbb{Q})$ generated by traces of branch points under a modular parametrization of $E$. We prove that for all rank two elliptic curves with conductor smaller than 1000, the critical subgroup is torsion. First, we define a family of critical polynomials attached to $E$ and describe two algorithms to compute such polynomials. We then give a sufficient condition for the critical subgroup to be torsion in terms of the factorization of critical polynomials. Finally, a table of critical polynomials is obtained for all elliptic curves of rank two and conductor smaller than 1000, from which we deduce our result.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.