Abstract

The inverse geodesic length of a graph G is the sum of the inverse of the distances between all pairs of distinct vertices of G . In some domains, it is known as the Harary index or the global efficiency of the graph. We show that, if G is planar and has n vertices, then the inverse geodesic length of G can be computed in roughly O ( n 9/5 ) time. We also show that, if G has n vertices and treewidth at most k , then the inverse geodesic length of G can be computed in O ( n log O ( k ) n ) time. In both cases, we use techniques developed for computing the sum of the distances, which does not have “inverse” component, together with batched evaluations of rational functions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call