Abstract
We introduce an approach for computing the free energy and the probability density in high-dimensional spaces, such as those explored in molecular dynamics simulations of biomolecules. The approach exploits the presence of correlations between the coordinates, induced, in molecular dynamics, by the chemical nature of the molecules. Due to these correlations, the data points lay on a manifold that can be highly curved and twisted, but whose dimension is normally small. We estimate the free energies by finding, with a statistical test, the largest neighborhood in which the free energy in the embedding manifold can be considered constant. Importantly, this procedure does not require defining explicitly the manifold and provides an estimate of the error that is approximately unbiased up to large dimensions. We test this approach on artificial and real data sets, demonstrating that the free energy estimates are reliable for data sets on manifolds of dimension up to ∼10, embedded in an arbitrarily large space. In practical applications our method permits the estimation of the free energy in a space of reduced dimensionality without specifying the collective variables defining this space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.