Abstract

This work is devoted to present a methodology for the computation of Discrete Compactness in -dimensional orthogonal pseudo-polytopes. The proposed procedures take in account compactness' definitions originally presented for the 2D and 3D cases and extend them directly for considering the D case. There are introduced efficient algorithms for computing discrete compactness which are based on an orthogonal polytopes representation scheme known as the Extreme Vertices Model in the -Dimensional Space (D-EVM). It will be shown the potential of the application of Discrete Compactness in higher-dimensional contexts by applying it, through EVM-based algorithms, in the classification of video sequences, associated to the monitoring of a volcano's activity, which are expressed as 4D orthogonal polytopes in the space-color-time geometry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.