Abstract

Given a gapped Hamiltonian of a spin chain, we give a polynomial-time algorithm for finding the degenerate ground space projector. The output is an orthonormal set of matrix product states that approximate the true ground space projector up to an inverse polynomial error in any Schatten norm, with a runtime exponential in the degeneracy. Our algorithm is an extension of the recent algorithm of Landau, Vazirani, and Vidick for the nondegenerate case, and it includes the recent improvements due to Huang. The main new idea is to incorporate the local distinguishability of ground states on the half-chain to ensure that the algorithm returns a complete set of global ground states.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.