Abstract

Given an ideal I in a polynomial ring K[x1,…,xn] over a field K, we present a complete algorithm to compute the binomial part of I, i.e., the subideal Bin(I) of I generated by all monomials and binomials in I. This is achieved step-by-step. First we collect and extend several algorithms for computing exponent lattices in different kinds of fields. Then we generalize them to compute exponent lattices of units in 0-dimensional K-algebras, where we have to generalize the computation of the separable part of an algebra to non-perfect fields in characteristic p. Next we examine the computation of unit lattices in finitely generated K-algebras, as well as their associated characters and lattice ideals. This allows us to calculate Bin(I) when I is saturated with respect to the indeterminates by reducing the task to the 0-dimensional case. Finally, we treat the computation of Bin(I) for general ideals by computing their cellular decomposition and dealing with finitely many special ideals called (s,t)-binomial parts. All algorithms have been implemented in SageMath.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call