Abstract
We present a family of algorithms for computing symmetric rank-revealing VSV decompositions based on triangular factorization of the matrix. The VSV decomposition consists of a middle symmetric matrix that reveals the numerical rank in having three blocks with small norm, plus an orthogonal matrix whose columns span approximations to the numerical range and null space. We show that for semidefinite matrices the VSV decomposition should be computed via the ULV decomposition, while for indefinite matrices it must be computed via a URV-like decomposition that involves hypernormal rotations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.