Abstract

Computation tree logic (CTL) is an essential specification language in the field of formal verification. In systems design and verification, it is often important to update existing knowledge with new attributes and subtract the irrelevant content while preserving the given properties on a known set of atoms. Under the scenario, given a specification, the weakest sufficient condition (WSC) and the strongest necessary condition (SNC) are dual concepts and very informative in formal verification. In this article, we generalize our previous results (i.e., the decomposition, homogeneity properties, and the representation theorem) on forgetting in bounded CTLto the unbounded one. The cost we pay is that, unlike the bounded case, the result of forgetting in CTLmay no longer exist. However, SNC and WSC can be obtained by the new forgetting machinery we are presenting. Furthermore, we complement our model-theoretic approach with a resolution-based method to compute forgetting results in CTL. This method is currently the only way to compute forgetting results for CTLand temporal logic. The method always terminates and is sound. That way, we set up the resolution-based approach for computing WSC and SNC in CTL.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.