Abstract

Inspired by the universality of computation, we advocate for a principle of spacetime complexity, where gravity arises as a consequence of spacetime optimizing the computational cost of its own quantum dynamics. This principle is explicitly realized in the context of the Anti-de Sitter/Conformal Field Theory correspondence, where complexity is naturally understood in terms of state preparation via Euclidean path integrals, and Einstein’s equations emerge from the laws of quantum complexity. We visualize spacetime complexity using Lorentzian threads which, conceptually, represent the operations needed to prepare a quantum state in a tensor network discretizing spacetime. Thus, spacetime itself evolves via optimized computation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call