Abstract

In engineering, geographical applications, scientific visualization, and bio-informatics, a variety of phenomena is described by a large set of data modeled as the values of a scalar function f:M->R defined on a surface M. A low quality of the discrete representations of the input data, unstable computations, numerical approximations, and noise might produce functions with a high number of critical points. In this context, we propose an algorithmic framework for smoothing an arbitrary scalar function, while simplifying its redundant critical points and preserving those that are mandatory for its description. From our perspective, the critical points of f are a natural choice to guide the approximation scheme; in fact, they usually represent relevant information about the behavior of f or the shape itself. To address the aforementioned aims, we compute a smooth approximation f@?:M->R of f whose set of critical points contains those that have been preserved by the simplification process. The idea behind the proposed approach is to combine smoothing techniques, critical points, and spectral properties of the Laplacian matrix. Inserting constraints in the smoothing of f allows us to overcome the traditional error-driven approximation of f, which does not provide constraints on the preserved topological features. Finally, the computational cost of the proposed approach is O(nlogn), where n is the number of vertices of M.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.