Abstract

This paper develops an analytical method for assessing the safety margins of a generation rejection scheme (GRS) reliably. It also presents a practical framework for implementing the proposed method integrated with energy management system and synchrophasor data in power grid operations. By employing a concept of virtual load connected to the critical generation bus of the single machine equivalent of the real-time operations case, we calculate, similar to transfer analysis, the allowable power to the virtual load in MW after tripping the pre-planned number of generation units and thus determine the required rejected power for the GRS initiating scenario. This virtual loading can be interpreted as the safety margin of the designed GRS to ensure its stabilizing operation. This research further develops a computationally efficient technique for refining the safety margin potentially with the measured synchrophasor data to improve the robustness of the GRS in practice. Understanding the safety margin is envisioned to help investigate and identify other practical options than tripping generators for protecting the system integrity. Accuracy and efficacy are demonstrated for real Korea power system cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.