Abstract
We consider a critical point method for finding certain solution (witness) points on real solution components of real polynomial systems of equations. The method finds points that are critical points of the distance from a plane to the component with the requirement that certain regularity conditions are satisfied. In this paper we analyze the numerical stability and complexity of the method. We aim to find at least one well conditioned witness point on each connected component by using perturbation, path tracking and projection techniques. An optimal-direction strategy and an adaptive step size control strategy for path following on high dimensional components are given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.