Abstract

ObjectivesComputing the basic reproduction number (R0) in deterministic dynamical models is a hot topic and is frequently demanded by researchers in public health. The next-generation methods (NGM) are widely used for such computation, however, the results of NGM are usually not to be the true R0 but only a threshold quantity with little interpretation. In this paper, a definition-based method (DBM) is proposed to solve such a problem.MethodsStart with the definition of R0, consider different states that one infected individual may develop into, and take expectations. A comparison with NGM has proceeded. Numerical verification is performed using parameters fitted by data of COVID-19 in Hunan Province.ResultsDBM and NGM give identical expressions for single-host models with single-group and interactive Rij of single-host models with multi-groups, while difference arises for models partitioned into subgroups. Numerical verification showed the consistencies and differences between DBM and NGM, which supports the conclusion that R0 derived by DBM with true epidemiological interpretations are better.ConclusionsDBM is more suitable for single-host models, especially for models partitioned into subgroups. However, for multi-host dynamic models where the true R0 is failed to define, we may turn to the NGM for the threshold R0.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.