Abstract
A mixed graph has both directed and undirected edges. We study how to compute a crossing-free drawing of an embedded planar mixed graph, such that it is upward ‘as much as possible’. Roughly speaking, in an upward drawing of a mixed graph all (undirected) edges are monotone in the vertical direction and directed edges flow monotonically from bottom to top according to their orientation. We study quasi-upward drawings of mixed graphs, that is, upward drawings where edges can break the vertical monotonicity in a finite number of edge points, called bends. We describe both efficient heuristic techniques and exact approaches for computing quasi-upward planar drawings of embedded mixed graphs with few bends, and we extensively compare them experimentally: the results suggest that our algorithms are effective in many cases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.