Abstract
We study the Lanczos method for computing extreme eigenvalues of a symmetric or Hermitian matrix. It is not guaranteed that the extreme Ritz values are close to the extreme eigenvalues---even when the norms of the corresponding residual vectors are small. Assuming that the starting vector has been chosen randomly, we compute probabilistic bounds for the extreme eigenvalues from data available during the execution of the Lanczos process. Four different types of bounds are obtained using Lanczos, Ritz, and Chebyshev polynomials. These bounds are compared theoretically and numerically. Furthermore we show how one can determine, after each Lanczos step, a probabilistic upper bound for the number of steps still needed (without performing these steps) to obtain an approximation to the largest or smallest eigenvalue within a prescribed tolerance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.