Abstract

The integer factorization problem (IFP), the finite field discrete logarithm problem (DLP) and the elliptic curve discrete logarithm problem (ECDLP) are essentially the only three mathematical problems that the practical public-key cryptographic systems are based on. For example, the most famous RSA cryptosystem is based on IFP, the US government's Digital Signature Standard, DSS, is based on DLP, whereas the ECC (Elliptic Curve Cryptography) and Elliptic Curve Digital Signature Algorithm (ECDSA) are based on ECDLP. The security of such cryptographic systems relies on the computational intractability of these three mathematical problems. In this paper, we shall present a survey of various methods for solving the IFP/DLP and particularly the ECDLP problems. More specifically, we shall first discuss how the index calculus as well as quantum algorithms can be used to solve IFP/DLP. Then we shall show why the index calculus cannot be used to solve ECDLP. Finally, we shall introduce a new method, xedni calculus , due to Joseph Silverman, for attack ECDLP; some open problems and new research directions, will also be addressed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call