Abstract

This paper deals with the computation of periodic orbits of dynamical systems up to any arbitrary precision. These very high requirements are useful, for example, in the studies of complex pole location in many physical systems. The algorithm is based on an optimized shooting method combined with a numerical ordinary differential equation (ODE) solver, tides, that uses a Taylor-series method. Nowadays, this methodology is the only one capable of reaching precision up to thousands of digits for ODEs. The method is shown to be quadratically convergent. Some numerical tests for the paradigmatic Lorenz model and the Hénon-Heiles Hamiltonian are presented, giving periodic orbits up to 1000 digits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.