Abstract

Numerical methods are considered for generating polynomials orthogonal with respect to an inner product of Sobolev type, i.e., one that involves derivatives up to some given order, each having its own (positive) measure associated with it. The principal objective is to compute the coefficients in the increasing-order recurrence relation that these polynomials satisfy by virtue of them forming a sequence of monic polynomials with degrees increasing by 1 from one member to the next. As a by-product of this computation, one gains access to the zeros of these polynomials via eigenvalues of an upper Hessenberg matrix formed by the coefficients generated. Two methods are developed: One is based on the modified moments of the constitutive measures and generalizes what for ordinary orthogonal polynomials is known as "modified Chebyshev algorithm". The other - a generalization of "Stieltjes's procedure" - expresses the desired coefficients in terms of a Sobolev inner product involving the orthogonal polynomials in question, whereby the inner product is evaluated by numerical quadrature and the polynomials involved are computed by means of the recurrence relation already generated up to that point. The numerical characteristics of these methods are illustrated in the case of Sobolev orthogonal polynomials of old as well as new types. Based on extensive numerical experimentation, a number of conjectures are formulated with regard to the location and interlacing properties of the respective zeros.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call