Abstract
In this paper, we study optimal experimental design problems with a broad class of smooth convex optimality criteria, including the classical A-, D- and p th mean criterion. In particular, we propose an interior point (IP) method for them and establish its global convergence. Furthermore, by exploiting the structure of the Hessian matrix of the aforementioned optimality criteria, we derive an explicit formula for computing its rank. Using this result, we then show that the Newton direction arising in the IP method can be computed efficiently via Sherman-Morrison-Woodbury formula when the size of the moment matrix is small relative to the sample size. Finally, we compare our IP method with the widely used multiplicative algorithm introduced by Silvey et al. [29]. The computational results show that the IP method generally outperforms the multiplicative algorithm both in speed and solution quality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.