Abstract

In this paper, dispersion relations (DRs) of photonic crystals (PhCs) are computed by multilayer perceptron (MLP) and extreme learning machine (ELM) artificial neural networks (ANNs). Bi- and tri-dimensional optimized structures presenting distinct DRs and photonic band gaps (PBGs) were selected for case studies. Optical properties of a set of PhCs with similar geometries and different dimensions were calculated by an electromagnetic solver in order to provide input data for ANN training and testing. We demonstrate that simple- and fast-training ANN models are capable of providing accurate DRs’ curves in a very short time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.